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Abstract
For a four-dimensional three-parametric toy Hamiltonian H(a, b, c) we
construct the domain D of couplings in which the eigenvalues En remain
real (i.e. in principle, observable). A relationship is found between the
reflection symmetry of the spectrum (i.e. its Dunne’s and Shifman’s self-duality
Ej = −EN+1−j at N = 4) and a geometric symmetry of the physical domainD.
Simultaneously, both remain unbroken at a = c.

PACS numbers: 03.65.Fd, 11.30.Er, 11.30.Ly, 02.10.Sp, 03.65.Bz, 02.40.Ft

1. Introduction

Reflection symmetry

Ej = −EN+1−j , j = 1, 2, . . . (1)

between the low- and high-excitation parts of the energy spectra is one of the features of all the
many-body Hamiltonians which are quadratic in the creation and annihilation operators [1]. In
a different physical context of quasi-exactly solvable local potentials, Dunne and Shifman [2]
found the same form of symmetry and called it self-duality of the spectrum. Recently, it was
rather surprising for us to detect the emergence of the same spectral symmetry (1) also during
the study of the strong-coupling version of a family of finite-dimensional phenomenological
non-Hermitian (often called PT -symmetric) chain-model Hamiltonians [3].

The latter study revealed that the additional symmetry (1) appeared in connection with
a thorough simplification of the spectra and also with a facilitated feasibility of an algebraic
determination of the positions of certain maximal physical couplings. Formally, the latter
maximal couplings were defined as vertices of the boundary ∂D of the domain D where the
free parameters of our models remained physically acceptable, i.e. compatible with the reality
and observability of the energies. As long as the domain D proved bounded, the observability
of the related energies can be called ‘conditional’ [4]. In our subsequent deeper study [5] of
the same class of models with symmetry (1) we succeeded in a further constructive extension
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of the previous result and in a clarification of the geometric structure of the horizons ∂D in
non-empty vicinities of all the above-mentioned vertices. In our present brief communication
we feel inspired by the latter experience.

Our purpose is to throw new light on the peculiar apparent correspondence between the
spectral symmetry (1) and the geometric shape of the boundary ∂D. An explicit description of
the latter manifold will be performed here for a specific, modified model where the up-down
symmetry (1) will be manifestly broken. We shall see, in essence, that after the violation of
symmetry (1) also the mysterious simplicity of the shape of the surface ∂D gets lost. For the
sake of clarity of our argument, we shall only consider the construction of ∂D for the exactly
solvable three-parametric matrix Hamiltonian

H =

⎛
⎜⎜⎝

−3 b 0 0
−b −1 a 0

0 −a 1 c

0 0 −c 3

⎞
⎟⎟⎠ . (2)

The problem differs from its two-parametric b = c predecessor of [3] (cf also a few related
marginal remarks in [6]) by a non-vanishing measure f > 0 of the extent of the asymmetry
which enters the upper coupling defined as b = b(c, f ) =

√
c2 + f 2.

We shall not analyze the possibilities of a transition to the higher-dimensional models
here. A thorough discussion of such a perspective has already been presented in both our
preceding papers on self-dual cases [3, 5]. Basically, we saw there that the key information
about the structure of the spectra is already provided by the models of the lowest dimensions.
The growth of the matrix dimension appeared to provide merely technical alterations of the
overall picture.

On this background, we now intend to pay more attention to the most elementary up-
down-asymmetric model (2). We shall apply computer-assisted linear algebra and formulate
some of its consequences in sections 2 and 3, with a brief summary in section 4.

2. Physical domain D (graphical approach)

Let us start by a terminological remark concerning equation (2) and all its generalizations with
parameters inside D. Its reason is that the accepted denotation of similar models characterized
by a non-standard transposition asymmetry differs in different applications. We will prefer
calling our H quasi-Hermitian (a term typical for nuclear physics [7]). Still, several authors
also use the equivalent names of pseudo-Hermitian H (predominantly in the context of linear
algebra and mathematics [8]) or crypto-Hermitian H (this nice and most self-explanatory
concept appeared recently in the context of gauge models [9]). Last but not least, another,
less strict nickname of PT -symmetric H as coined by Bender [10] became most popular as
particularly appealing in field theory.

2.1. The allowed range of A(a, c, f )

Returning now to our particular model let us recollect that its energies coincide with the roots
of its secular determinant,

det(H − EI) = 0, (3)

where we decided to set b2 = c2 + f 2, with a new measure of the up-down asymmetry f > 0
replacing the original coupling parameter b. We may express equation (3) in its explicit
polynomial form

E4
1,2,3,4 − A(a, c, f )E2

1,2,3,4 + C(a, c, f ) = 4f 2E1,2,3,4 (4)
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Figure 1. Graphical solution of our secular equation (4 at A > 0).

where we have A(a, c, f ) = 10 − a2 − 2c2 − f 2 while

C(a, c, f ) = 9 + 6c2 − 9a2 + 3f 2 + c4 + f 2c2

or, in compact form,

C(a, c, f ) = (3 + c2)2 + f 2(3 + c2) − 9a2 = (3 + c2 + f 2/2)2 − (9a2 + f 4/4)

= (8 − A/2 − a2/2)2 − (9a2 + f 4/4).

We observe that at any positive f > 0 and negative (or vanishing) A � 0, the left-hand-
side curve of equation (4) can only have at most two real intersections E1,2 = E1,2(f ) with
the right-hand-side straight line. This means that the spectrum always contains at least two
complex conjugate energy roots and we stay off D.

If we allow A � 0 and vanishing f = 0, the two complex roots become real only in
the limit A → 0. Thus, the point of the boundary ∂D of the physical domain of parameters
would be achieved, in full agreement with our older self-dual results [3]. Now, we decided
to assume that the self-duality is manifestly broken, f > 0, so that we may conclude that we
have always to consider just the strictly positive values of the polynomial

A(a, c, f ) > 0, (a, c, f ) ∈ D. (5)

Under this assumption, the graphical solution of equation (4) is sampled, in arbitrary units,
in figure 1. At a variable f > 0 we shall further require that inside D, the left-hand-side
superposition of the two (namely, quadratic and quartic) parabolic curves of equation (4) has
strictly four real intersections with the right-hand-side straight line. From this assumption
one immediately deduces that we must have a negative E1(f ) > E1(0) and E2(f ) < E2(0)

and a positive E3(f ) < E3(0) and E4(f ) > E4(0). Hence, the two rightmost roots E3 and
E4 can never merge and, subsequently, they cannot form a complex conjugate doublet unless
f = A = 0. In terms of the geometry of D, the transition to f �= 0 immediately destroys the
multidimensional hedge-hog-shaped form of the surface ∂D as observed at f = 0 [5].

2.2. The allowed range of C(a, c, f )

An inspection of figure 1 reveals that at E = 0, one of the curves acquires the value of
C(a, c, f ) which may be, in principle, positive, vanishing or negative. Once we keep the
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quantity f = f0 > 0 fixed, the variation of a and/or c just changes the values of the functions
C(a, c, f0) and A(a, c, f0). In the two-parametric space of a and c we may move along a line
of a constant A(a, c, f0) and observe that any decrease of C(a, c, f0) leads to the decrease of
the distance between the intersections E2(f0) and E3(f0). In principle, these two values will
merge and subsequently complexify below certain f0-dependent value C(minus)(a, c, f0) < 0.
Similarly, the growth of the value of the function C(a, c, f0) will imply the decrease of the
distance between the two leftmost energies E1(f0) and E2(f0). The latter pair will merge (and
subsequently complexify) at an upper bound C(plus)(a, c, f0) which, by the way, need not be
necessarily positive. We may conclude that all the four energies remain real iff

C(minus)(a, c, f ) � C(a, c, f ) � C(plus)(a, c, f ), (a, c, f ) ∈ D. (6)

Both these bounds also follow algebraically from our secular equation (4) of course. Their
occurrence corresponds to the confluence of the above-mentioned pairs of energies at a point
of the boundary ∂D of D.

In the graphical language this means that inside all the interior ofD, the graph of the secular
polynomial Y (E) = det(H − E) = E4 − AE2 − 4f 2E + C will intersect the real line four
times, achieving its leftmost, negative minimum at a negative real variable z(min) ∈ (E1, E2),

Y (z(min)) = z4
(min) − Az2

(min) − 4f 2z(min) + C(plus) < 0. (7)

The subsequent positive maximum of Y (z) will occur at a larger z(max) ∈ (E2, E3),

Y (z(max)) = z4
(max) − Az2

(max) − 4f 2z(max) + C(minus) > 0. (8)

As long as we showed above that the two rightmost energy roots E3 and E4 can never merge,
the remaining, third extreme of the function Y (z) at some z � zmax may and will be ignored
here as redundant.

With the variation of a, c and f , we shall always have Y (0) ≡ C while the quantities
z(min) � z(max) correspond to the respective leftmost minimum and subsequent maximum of
the difference curve Y (z) (in figure 1, you may imagine that f varies). Algebraically, the
two quantities z(min) and z(max) coincide with the two real roots of the third-order polynomial
∂Y/∂z, i.e. of the cubic equation

4z3(
max

min

) − 2A(a, c, f )z(
max

min

) = 4f 2 (9)

(cf figure 2). Once we know these auxiliary values, we can define the required bounds from
their definition

C(
minus

plus

) = 4f 2z(
max

min

) + Az2(
max

min

) − z4(
max

min

) (10)

which, after an algebraic simplification using equation (9), degenerates to the simpler formula

C(
minus

plus

) = A(a, c, f )

2
z2(

max

min

) + 3f 2z(
max

min

). (11)

We may conclude that since the only negative component of the polynomial C(a, c, f ) is
−9a2, the latter bounds in effect fix the allowed range of the parameter a for any given pair of
c and f . In the other words, the middle energy levels E2 and E3 can merge iff the value of a
proves sufficiently large. Moreover, since A > 0, the quadruple merger of E1 and E2 and E3

with E4 would require a return to f = 0 and proves entirely excluded at f �= 0.
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Figure 2. Graphical solution of equation (9) at A > 0.

3. Physical domain D (analytic approach)

In our previous studies [3, 5] of N-dimensional chain models it has been conjectured and
verified that at all N, the postulate of a self-duality of the spectrum Ej = −EN+1−j could
perceivably simplify the construction as well as the geometric characterization of the shape
of the manifold D. In section 2, an independent constructive support of the plausibility of
such a relationship has been given via our three-parameter non-selfdual example (2). In what
follows we intend to complement these results by paying attention to a simplification and non-
numerical description of the boundary ∂D. This might prove relevant, e.g. in the quantitative
context of the strong-coupling and/or singular forms of perturbation theory [5] as well as in a
more qualitative setting of a possible quantum version of theory of catastrophes [4].

3.1. The allowed range of the asymmetry f

We assumed knowledge of the input energy-degeneracy-determining auxiliary quantities z(min)

and z(max) which can both be defined by the Cardano formulae in principle. Fortunately, a
perceivably less painful recipe can be recommended. In a preparatory step, an inspection of
equation (9) (cf also figure 2) reveals that the pair of our auxiliary quantities z(min) � z(max)

remains real iff f ∈ (0, f(upper)). Here, the numerical value of the upper bound f(upper)

annihilates the polynomial Z(z) = 4z3 − 2Az − 4f 2 at its left maximum where ∂Z/∂z = 0
at z = z(upper). This means that

12z2
(upper) = 2A, z(upper) = −

√
A

6
, f(upper) =

(
A3

54

)1/4

.

Thus, we are allowed to reparametrize f → ϕ in such a way that

f 2 = f 2
(upper) cos ϕ, ϕ = ϕ(A, f ) ∈ (0, π/2).

Moreover, using the direct insertion in equation (9) we easily verify that its closed solutions
simply read

z(min) = −
√

2A

3
cos

(
π − ϕ

3

)
, z(max) = −

√
2A

3
cos

(ϕ + π

3

)
.
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Both of them are negative and they only have to satisfy the pair of constraints

z(min) = z(min)(A, ϕ) ∈ (−
√

A/2,−
√

A/6), (12)

z(max) = z(max)(A, ϕ) ∈ (−
√

A/6, 0). (13)

This enables us to conclude that all the above-mentioned open interval of ϕ may be treated as
lying inside D. The angle ϕ is, therefore, a better measure of the breakdown of the self-duality
of our toy Hamiltonian H. Next, let us show that and why also its further coupling constants
should be reparametrized.

3.2. A reparametrization (a, c, f ) → (α, δ, ϕ) of H and D

Let us replace A → α in such a way that A = 10 sin2 α with α ∈ (0, π/2). Moreover, let us
also reparametrize a → δ with a2 = 10 cos2 α sin2 δ and δ ∈ (0, π/2). This implies that the
resulting formula 2c2 + f 2 = 10 cos2 α cos2 δ may be inserted in the definition of

C(a, c, f ) = (3 + 5 cos2 α cos2 δ)2 − 90 cos2 α sin2 δ − f 4/4

= (12 + 5 cos2 α cos2 δ)2 − 90 cos2 α − 135 − f 4/4.

In parallel, we may also reparametrize equation (11),

C(
minus

plus

) = 100

3
sin4 α cos

(
π ± ϕ

3

)[
cos

(
π ± ϕ

3

)
− cos ϕ

]
, (14)

which is independent of δ. Thus, we may introduce another pair of shifted and safely positive
boundaries

B(
minus

plus

) = C(
minus

plus

) + 90 cos2 α + 135 + f 4/4 ≡ B(
minus

plus

)(α, ϕ)

and arrive at the final and amazingly compact form of our key constraint (6),√
B(minus)(α, ϕ) � 12 + 5 cos2 α cos2 δ �

√
B(plus)(α, ϕ), δ ∈ D. (15)

Our construction of the quasi-Hermiticity [7] domain D is completed since equation (15) is
its definition. In the limit f → 0, this equation has also been checked to specify the simpler
domain D described in paper [3].

At f > 0 our present generalized definition (15) of D is algebraic and rigorous but its
geometric interpretation is not too transparent. Indeed, although our two inequalities specify
the allowed, physical range of δ for any given pair of parameters (α, ϕ), the interval can prove
empty. This would mean that the domain D does not contain any point with pre-selected
(α, ϕ). Unfortunately, an account of similar subtleties already lies a bit beyond the scope of
our present brief communication.

4. Summary

Any non-Hermitian PT -symmetric quantum Hamiltonian H remains physical in a domain
of parameters D where the spectrum is real and, hence, measurable. In [3, 5] we revealed
that several properties of a family of tridiagonal matrix Hamiltonian models of this type
become exceptionally transparent after an imposition of the up-down symmetry or ‘self-
duality’ requirement (1). In our present study we complemented this observation by a test of
the consequences of a manifest violation of the self-duality.

We saw that once the real measure f 2 of the violation of self-duality becomes different
from zero, our first nontrivial, up-down-asymmetric model (2) (skipped in [6] as complicated)
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offers a challenging eigenvalue problem. We have shown that its discussion and the non-
numerical construction of its physical domain of parameters D still remain feasible and
compact.

We believe that our present construction of a toy model with non-numerically tractable
physical horizon ∂D will further improve our understanding of the mathematics which
underlies the so-called conditional-solvability phenomenon [4] as well as the analyses of
the so-called quantum catastrophes [4, 5, 11]. At present, the practical role of these fairly
fresh mathematical concepts finds new and new physical applications, the number of which
is rapidly increasing. Besides their above-stressed innovative role in quantum theory and
particle physics [10], it is worth noting, in the conclusion, that their use also currently inspired
new progress in the areas as remote as relativistic cosmology [8] and phenomenological
magnetohydrodynamics [12].
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